Direct Variation

Statement (key words)
• y varies directly as x
• y is directly proportional to x

Equation of Variation:

$$y = mx \text{ or } y = kx$$

where k is the constant of variation or the constant of proportionality.

Example:

Assume that y is directly proportional to x. Use the given x-value and y-value to find a linear model that relates y and x.

$x = 2, y = 14$

$$y = kx$$

$$14 = k(2)$$

$$7 = k$$

$$y = 7x$$
Direct Variation as an n^{th} Power

Statement (key words)
• y varies directly as the nth power of x
• y is directly proportional to the nth power of x

Equation of Variation:

$$y = kx^n$$

where k is the constant of variation or the constant of proportionality.

Example:

Use the given value of k to complete the table for the direct variation model $y = kx^2$

$$k = \frac{1}{4}$$

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = kx^2$</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>
Inverse Variation

Statement (key words)
- \(y \) varies inversely as \(x \)
- \(y \) is inversely proportional to \(x \)

Equation of Variation:

\[y = \frac{k}{x} \quad \text{or} \quad xy = k \]

where \(k \) is the constant of variation or the constant of proportionality.

Example:

Determine whether the variation model is of the form \(y = kx \) or \(y = \frac{k}{x} \), and find \(k \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

\[y = \frac{k}{x} \quad \text{or} \quad xy = k \]

Direct

\[\frac{2}{5} = k \]

\[y = \frac{2}{5}x \]